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Finite, Countable, and Uncountable Sets

Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 



Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 

2     (In)Finite,(Un)Countable Sets.nb



Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 

4     (In)Finite,(Un)Countable Sets.nb



Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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Definition: If there exists a one-to-one mapping of A onto B (that is, a map from A to B 

that is bijective), then we say that A and B can be put in 1-1 correspondence, or that A 

and B have the same cardinal number, or briefly, that A and B are equivalent, and we 

write A~ B. This relation clearly has the following properties:

ð It is reflexive: A~ A.

ð It is symmetric: If A~ B, then B~ A.

ð It is transitive: If A~ B and B~C, then A~C. 

Any relation with these three properties is called an equivalence relation. 

Definition: For any positive integer n, let Jn be the set whose elements are the integers 

1, 2, ..., n ; let J  be the set consisting of all positive integers (same as N). Then, for any set 

A we say:

i) A is finite if A~ Jn for some n (the empty set is also considered to be finite). 

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A~ J . 

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 

Note: For two finite sets A and B, we evidently have A~ B iff A and B contain the same 

number of elements. For infinite sets however, the idea of  “having the same number of 

elements” becomes quite vague, whereas the notion of  1-1 correspondence retains its 

clarity. 

Example:

a) The set of all integers Z is countable. 

To see this we can define a function f : Z� J  such that 

f HnL =
2 n if n ³ 1

-2 n + 1 if n £ 0

This function sets up the 1-1 correspondence 

Z: ... - 3, -2, ..., 2, 3 ...

           �     �   �    �

J :   ... 7, 5, ..., 4, 6 ...

That is, the negative integers in Z are mapped to the odd numbers on J  while the posi-

tive integers in Z are mapped to the even numbers in J . 

Note that usually there are multiple bijective maps capable of establishing a 1-1 correspon-

dence between two sets. For instance, we could’ve used a map from J  to Z instead, say 

f : J �Z such that 

          f HnL =

n

2
if n is even

-
n-1

2
if n is odd

This function sets up the 1-1 correspondence 

J : ... 1, 2, 3, 4, ...

           �     �   �    �

Z:   ... 0, 1, -1, 2 ...

That f  in both cases is bijective is easy to check. Notice that Z is equivalent to a proper 

subset of itself! This is typical of infinite sets whereas it’s impossible for finite sets.    

b) The set of all cartesian products on N is equivalent to N itself, i.e.  N ´ N ~ N. 

A quick proof is supplied by the fundamental theorem of  arithmetic:

Each positive integer k Î N can be uniquely written as k = 2m-1 H2 n - 1L for some m, n Î N. 

Define f : N ´ N�N  by f Hm, nL = 2m-1 H2 n - 1L. It is obvious that this f  is bijective.   

c) The set of all real numbers is equivalent to the interval I-
Π

2
,

Π

2
M, i.e. R~I-

Π

2
,

Π

2
M. 

To see this, define f : R�I-
Π

2
,

Π

2
M by f HxL = tan-1HxL. Recall from calculus that f  is a 

strictly increasing (hence one-to-one) function from R to I-
Π

2
,

Π

2
M, and it’s also onto. 

**Note: As a matter of fact, R is equivalent to any interval of real numbers Ha, bL.**      Ù

• Theorem: 

Every infinite subset of a countable set A is countable. 

Proof:

Suppose E Ì A and E is infinite. Arrange the elements x of A in a sequence 8xn< of 

distinct elements. Then construct a sequence 8nk< as follows:

Let n be the smallest positive integer such that xn1
Î E. Having chosen n1, ..., nk-1 

Hk = 2, 3, 4, ...L, let nk be the smallest integer greater than nk-1 such that xn
k

Î E. 

Putting  f HkL = xn
k
 for k = 1, 2, 3, ..., we obtain a 1-1 correspondence between E and N.  à

Definition: Let A and B be sets. then A\B = 8x Î A : x Ï B<. 

• Theorem:

Every infinite set has a countable subset. 

Proof:

Let A be an infinite set. Then A ¹ Æ, because Æ is considered to be finite. Let x1 Î A be 

any element of A. Then A\8x1< ¹ Æ (otherwise A = 8x1< and A is finite). Pick x2 Î A\8x1< 

to be any element of A\8x1<. 
Having chosen x1, ..., xn-1, observe that A\8x1, ..., xn-1< ¹ Æ (otherwise A = 8x1, ..., xn-1<, 
making A finite). Hence we are free to select xn Î A\8x1, ..., xn-1<. 

Let E = 8xn< Ì A. Then E is countable.      à

Note: This last theorem shows that a countable infinity is the smallest type of infinity. 

That is, no uncountable set can be a subset of a countable set, while every infinite set has 

a countable subset. 

To motivate our next several results, we now present a second proof that N ´ N is equiva-

lent to N.

• Theorem:

N ´ N is equivalent to N.

Proof:

Arrange N ´ N  in a matrix:

                          

The arrows and number marks indicate the order in which we will count the elements of  

N ´ N. Each diagonal that is traced by the arrows contains all ordered pairs whose compo-

nents add up to the same number. Notice also that the first diagonal contains one ele-

ment, the second diagonal contains two elements, and so on. 

These observations allow us to construct a bijective map f : N ´ N�N explicitly:

 

             f Hm, nL =
Hm+n-2L Hm+n-1L

2
+ n

Thus, we have a constructed an invertible map from N ´ N to N, which implies that 

N ´ N~N, and this proves our theorem. à

The above theorem gives us a ton of new information. We can see this materialize in the 

following theorem:

• Theorem:

The countable union of countable sets is countable. That is, if Ai is countable for 

i = 1, 2, 3, .., then Ü
i=1

¥

Ai is countable. 

Proof:

Since each Ai is countable, we can arrange their elements collectively in a matrix:

                         

A1 : a11 a12 a13 . . � �

A2 : a21 a22 a23 . . � �

A3 : a31 a32 a33 . . � �

. . . . . . � �

. . . . . . � �

So Ü
i=1

¥

Ai is the range of some invertible map on N ´ N (just as the one constructed on the 

previous theorem). That is, Ü
i=1

¥

Ai is equivalent to N ´ N and hence to N. à

Note that proof of the above theorem can be used to show that, given any two countable 

sets A and B, the set A ´ B is also countable. 

• Corollary:

Q is countable. 

Note: Recall that between any two real numbers there is a rational number. This means, 

in fact, that between any two real numbers, there are infinitely many rational numbers 

(since R is infinite and we know that Ha, bL~R " a, b Î R). Surprisingly, N is as large as Q 

even though N Ì Q and there are infinitely many rationals between any two rational 

numbers. 

So far we have shown that N, Z, Q are all countable. Now we show the shocking result 

that R is not a countable set.

• Theorem:

R is uncountable.

Proof:

To prove that R is uncountable, it is enough to show that some subset in R is uncount-

able  (since no countable set can have an uncountable subset). Therefore, we can use the 

subset H0, 1L and prove that it’s uncountable. To accomplish this, we will show that any 

countable subset of H0, 1L is proper. 

Given any sequence 8an< in H0, 1L, we construct an element x in H0, 1L with x ¹ an for any 

n. We begin by listing the decimal expansions of the an; for example: 

a1 = 0. 3 1572 ...

a2 = 0.0 4 268 ...

a3 = 0.91 5 36 ...

a4 = 0.759 9 9 ...

...........................

(If any an has two representations, just use the infinite one)

Now let x = 0.533353 ..., where the nth digit in the expansion for x is taken to be 3, unless 

an happens to have 3 as its nth digit, in which case we replace it with 5 (this is why we 

“boxed”  the nth digit in the expansion of an above. Note that the choices of 3 and 5 are 

more or less arbitrary, in truth we just want to avoid the troublesome digits 0 and 9 but 

any other digits would do). 

Using this procedure, the decimal representation of x is unique because it does not end 

in all 0’s or all 9’s, and x ¹ an  for any n because the decimal expansions for x and an 

differ in the nth place. Thus we have shown that 8an< is a proper subset of H0, 1L, and 

hence H0, 1L is uncountable, which in turn implies that R is uncountable. à

Note: The proof that we just produced is known as Cantor’s diagonalization method. It 

gives insight into the differences between countable and uncountable sets. 

• Corollary:

The set of all irrationals R\Q (or simply I), is uncountable.

Proof:

We know that R = Q Ü I. We also know that the union of countable sets must be count-

able. Since Q is countable and R is uncountable, it follows that  I must be uncountable.                 

à

• Cantor’s Theorem:

No map F : A�PHAL can be onto. 

Proof:

Given any function F : A�PHAL, consider SF = 8x Î A : x Ï FHxL< Î PHAL. We claim that 

SF ¹ FH yL for any y Î A. Indeed, if SF = FH yL, then we are faced with the following 

alternatives:

 y Î FH yL = SF                          y Ï FH yL = SF.

       � y Ï FH yL            or                  � y Î FH yL. 

and both lead to contradictions! à

• Bernstein’s Theorem:

Let A and B be nonempty sets. If there exist one-to-one maps f : A� B and g : B� A, 

then there is a map h : A� B that is both one-to-one and onto. Informally, this implies 

that if two cardinalities are both less than or equal to each other, then they are equal.

Proof:

We would like to find a set S that will allow us to define h : A� B as a piecewise function

hHxL =
f HxL if x Î S

g-1HxL if x Î A\S

        

What conditions must the set S satisfy? Since h must be onto B, we must have 

B = f HSL Ü g-1HA\SL or equivalently, A\S = gHB\ f HSL. This last equation may be con-

verted to S = A\gHB\ f HSLL. 

Define H : PHAL�PHAL by HHSL = A\gHB\ f HSLL. We then have to find a solution to the 

“fixed point” equation S = HHSL.

To do this, observe that

i) H is increasing:

Suppose S Ì T, then f HSL Ì f HTL. Consequently, 

B\ f HSL É B\ f HTL,  gHB\ f HSLL É gHB\ f HTLL,  and A\gHB\ f HSLL Ì A\gHB\ f HTLL. 

Thus HHSL Ì HHTL. 

ii) Let ¶ = 8S Î PHAL : S Ì HHSL<. Then Æ Î ¶ and ¶ is not empty. Let S* = Ü
S Î ¶

S, then 

S* Ì HHS*L. To see this, observe that for any S Î ¶, S Ì S*, and S Ì HHSL. 
Since H is increasing, it follows that HHSL Ì HHS*L. Thus, S Ì HHSL Ì HHS*L for all S* Î ¶. 

Hence Ü
S Î ¶

S Ì HHS*L. 

Notice now that HHS*L Ì HHHHS*LL. Thus HHS*L Î ¶. It follows that S* = HHS*L. S* is there-

fore the desired set.   à

(Alternate) Proof:

We call an element b of B lonely if there is no element a Î A such that f HaL = b . We say 

that an element b1 of B is a descendent of an element b0 of B if there is a natural num-

ber n (possibly zero) such that b1 = I f é gMn Hb0L.

We define the function h : A� B as follows:

                      hHaL =
g-1HaL if f HaL is the descendent of a lonely point

f HaL otherwise

Note that if f HaL is the descendent of a lonely point, then f HaL = f é g HbL for some b; 

since g is injective, the element g-1HaL is well defined. Thus our function h is well 

defined. We claim that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b Î B is the descendent of a lonely point, 

then hIgHbLM = b ; and if b is not the descendent of a lonely point, then b is not lonely, so 

there is some a Î A such that f HaL = b ; by our definition, then, hHaL = b . Thus  is surjec-

tive.

Next, we prove that h is injective. We first note that for any a Î A, the point hHaL is a 

descendent of a lonely point if and only if f HaL is a descendent of a lonely point. Now 

suppose that we have two elements a1, a2 Î A such that hHa1L = hHa2L . We consider two 

cases.

If f Ha1L  is the descendent of a lonely point, then so is f Ha2L. 
Then, 

             g-1Ha1L = hHa1L = hHa2L = g-1Ha2L .

Since g is a well defined function, it follows that a1 = a2.

On the other hand, if f Ha1L is not a descendent of a lonely point, then neither is f Ha2L . It 
follows that 

     f Ha1L = hHa1L = hHa2L = f Ha2L .
Since  is injective, a1 = a2.

Thus h is injective. Since h is surjective and injective, it is bijective, as desired. à

To appreciate how incredible Bernstein’s result truly is, consider the following example.

Example:

Let R¥ be the set of all real-valued sequences. That is, if x Î R
¥, then 

x = Hx1, x2, ..., xn, ...L, where each xi Î R. Then R¥ ~H0, 1L. 
To show this, first observe that R¥ ~H0, 1L¥

( Define f : R
¥ �H0, 1L¥ by f Hx1, x2, ...L =

tan-1Hx1L +
Π

2

Π
,

tan-1Hx2L +
Π

2

Π
, ....  ).

Thus, it is enough to show that H0, 1L~H0, 1L¥ ( Note that H0, 1L¥ is the set of all sequences 

8xn< with xn Î H0, 1L ).
To do this, observe that f : H0, 1L�H0, 1L¥ given by f HxL = Hx, 0, 0, ...L (the choice of 

zeroes is arbitrary, what’s important is to fix the first element) is an injective map from 

H0, 1L into H0, 1L¥.  Thus,

   cardH0, 1L £ cardH0, 1L¥.

To prove the other direction, let x Î H0, 1L¥. Then x = Hx1, x2, ..., xn, ...L, where 

xn Î H0, 1L for all n Î N. Represent each xn by its unique finite decimal expansion 

xn = 0. xn1
xn2

xn3
.... 

In addition, let pn be the nth prime and define g : H0, 1L¥ �H0, 1L by gHxL = 0. y1 y2 y3 ..., 

where 

     yk =
xni

if k = pn
i

0 otherwise

Then g is injective. In particular, 

  cardH0, 1L¥ £ cardH0, 1L. 
Thus it follows, by Bernstein’s theorem, that R¥ ~H0, 1L¥ ~H0, 1L.   Ù 

• Theorem:

The rational numbers (Q) have measure 0 (i.e. occupy no space) on the real number line.

Proof:

Since Q is a countable set, we can list all of its elements in a sequence 8xn<. We will show 

that Q has measure 0 by proving that for any Ε > 0, there is a collection of open intervals 

which cover Q and whose combined length is less than Ε. 

To do this, for each xn Î Q, define In by

 In = Jxn -
Ε

2n+1
, xn +

Ε

2n+1
N .

In other words, In is just an interval of length LHInL =
Ε

2n
 centered at xn. Clearly, it is true 

that  Q Ì Ü
n=1

¥

In. Now we have

                      L Ü
n=1

¥

In £ Ú
n=1

¥

LHInL = Ú
n=1

¥
Ε

2n
= Ε Ú

n=1

¥
1

2n
= Ε .      à

Note: The above theorem can be interpreted as saying that the likelihood of selecting a 

rational number at random in the set of real numbers is 0. To put it in more colorful 

terms, having selected one object, the chance that another randomly selected object can 

be described in terms of the first is 0. 

Definition: A number is said to be algebraic if there exist integers a0, a1, ..., an Î Z such 

that  a0 + a1 x + ... + an xn = 0 . 

• Theorem:

The set of all algebraic numbers is countable.

Proof:

Let An be the set of all polynomials of degree n with integer coefficients.

The map a0 + a1 x + ... + an xn Ì Ha0, a1, ..., anL shows that An ~Z
n+1, which implies that 

An is countable. Now the set of all polynomials with integer coefficients can be written as 

the countably infinite union A = Ü
n=1

¥

An, which must therefore be countable. Thus, each 

polynomial in A can be assigned a natural number that uniquely identifies it. 

Let k Î N be the unique positive integer corresponding to pHxL = a0 + a1 x + ... + an xn. 

Observe that this polynomial can have at most n distinct complex roots. We can arrange 

these roots in lexicographic order from smallest to largest and associate k .1 with the 

smallest root of p, k .01 with the next smallest root of p, k .001 with the third smallest 

root, etc. 

Clearly, each algebraic number is thus paired with at least one rational number. This 

implies that algebraic numbers are countable. à

Note: Notice that all countable sets have measure 0 in  R or  C. Thus, the probability that 

a number is algebraic is 0, which implies that almost all numbers are transcendental. 
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